
www.blacksnwhite.com

black N White black N White

NAME

ROLL
NUMBER

SEMESTER 3rd

COURSE CODE DCA2102_Sept2024 BCA_Sem3

COURSE NAME DATABASE MANAGEMENT SYSTEM

www.blacksnwhite.com

SET-I

Q.1) What do you mean by cardinality? What are the different types
of Cardinalities in RDBMS? Explain by giving suitable example.

Answer : Cardinality in RDBMS
In the realm of Relational Database Management Systems (RDBMS), cardinality is a
fundamental concept that defines the relationship between entities (tables). It essentially
specifies the number of times an entity from one set can be associated with an entity from
another set.
Types of Cardinality
There are three primary types of cardinality relationships in RDBMS:

1. One-to-One (1:1):
o A single instance of one entity is associated with exactly one instance of

another entity.
o Example: Consider a scenario where a person can have only one passport, and

a passport can belong to only one person. In this case, the relationship between
the "Person" and "Passport" entities would be one-to-one.

2. One-to-Many (1:N):
o A single instance of one entity can be associated with multiple instances of

another entity.
o Example: A customer can place multiple orders, but each order belongs to

only one customer. Here, the relationship between "Customer" and "Order"
entities is one-to-many.

3. Many-to-Many (M:N):
o Multiple instances of one entity can be associated with multiple instances of

another entity.
o Example: A student can enroll in multiple courses, and a course can have

multiple students. This is a many-to-many relationship between "Student" and
"Course" entities.

Understanding Cardinality in Database Design
Cardinality plays a crucial role in database design as it helps determine the appropriate
structure for tables and relationships. By correctly identifying cardinality relationships, you
can ensure data integrity and optimize database performance.
Key Considerations:

 Data Integrity: Cardinality constraints help maintain data consistency by enforcing
rules on how data can be entered and modified.

 Database Performance: Proper understanding of cardinality can lead to efficient
query optimization and indexing strategies.

 Normalization: Normalization, a database design technique, often involves breaking
down complex relationships into simpler ones to reduce redundancy and improve data
integrity. Cardinality analysis is essential for normalization.

Visualizing Cardinality with ER Diagrams
Entity-Relationship (ER) diagrams are a visual tool to represent entities and their
relationships. Cardinality is often depicted using symbols:

 One: A single line
 Many: A crow's foot

www.blacksnwhite.com

For example, a one-to-many relationship between "Department" and "Employee" can be
visualized as:
Department -----> Employee
A many-to-many relationship between "Student" and "Course" can be visualized as:
Student <-----> Course
By understanding cardinality and its implications, you can design robust and efficient
databases that effectively store and manage information.

Q.2) What do you mean by Entity Integrity Constraint and Referential
Integrity Constraint. Explain by giving suitable example.

Answer : Entity Integrity Constraint

An Entity Integrity Constraint (EIC) is a fundamental rule in database design that ensures the
uniqueness and non-null nature of primary keys. A primary key is a unique identifier for each
record in a table. The EIC mandates that:

1. Primary Key cannot be null: Every record must have a unique primary key value. This
is because the primary key is used to identify individual records, and a null value
would make identification impossible.

2. Primary Key values must be unique: No two records can have the same primary key
value. This ensures data integrity and prevents duplicate records.

Example: Consider a "Students" table with columns: "StudentID" (primary key), "Name", and
"Age". The EIC ensures that:

 Every student record must have a unique "StudentID".
 No two students can have the same "StudentID".

Referential Integrity Constraint
A Referential Integrity Constraint (RIC) defines a relationship between two tables, ensuring
data consistency and preventing data anomalies. It establishes a parent-child relationship,
where the primary key of one table (parent table) is referenced as a foreign key in another
table (child table). The RIC mandates that:

1. Foreign Key values must reference existing primary key values: If a foreign key
references a primary key in another table, the referenced primary key value must exist.

2. Foreign Key values can be null: A foreign key can be null, indicating that the child
record does not have a corresponding parent record.

Example: Consider two tables: "Departments" (with columns: "DepartmentID" (primary key)
and "DepartmentName") and "Employees" (with columns: "EmployeeID" (primary key),
"Name", "Salary", and "DepartmentID" (foreign key)). The RIC ensures that:

 The "DepartmentID" in the "Employees" table must reference an existing
"DepartmentID" in the "Departments" table.

 If an employee is not assigned to a department, their "DepartmentID" can be null.
Importance of Integrity Constraints
Integrity constraints are crucial for maintaining data quality and consistency in databases.
They help prevent accidental data loss, errors, and inconsistencies. By enforcing these
constraints, databases can ensure that data is accurate, reliable, and secure.

Entity Integrity ensures the uniqueness and non-null nature of primary keys, while Referential
Integrity ensures the consistency of relationships between tables. Both constraints play a vital
role in database design and data management.

www.blacksnwhite.com

Q.3) Explain the important properties of transactions that a DBMS must
ensure to maintain data in the face of concurrent access and system failures

 Answer : Important Properties of Transactions in DBMS

A transaction in a database management system (DBMS) is a logical unit of work that
performs a series of operations on the database. To ensure data integrity and consistency, even
in the face of concurrent access and system failures, DBMSs must adhere to the ACID
properties:
ACID Properties

1. Atomicity:
o A transaction is treated as an indivisible unit.
o Either all operations within a transaction are completed successfully, or none

of them are.
o If a transaction fails midway, the DBMS rolls back the changes made so far,

leaving the database in its original state.
o This ensures that the database remains consistent, preventing partial updates.

2. Consistency:
o A transaction must preserve the database's integrity constraints.
o It must transform the database from one consistent state to another.
o For instance, if a transaction transfers money from one account to another, it

must ensure that the total amount of money in the system remains unchanged.
3. Isolation:

o Concurrent transactions should not interfere with each other.
o The effects of a transaction should be isolated from other transactions until it

commits.
o This prevents anomalies like lost updates, dirty reads, and non-repeatable

reads.
o DBMSs use techniques like locking and timestamping to achieve isolation.

4. Durability:
o Once a transaction commits, its changes are permanent.
o Even if the system crashes or there's a power outage, the committed changes

must be preserved.
o DBMSs typically use write-ahead logging to ensure durability. The log records

all changes made by a transaction before committing them to the database. In
case of a system failure, the log can be used to recover the database to a
consistent state.

Why ACID Properties are Important
 Data Integrity: ACID properties help maintain data integrity by preventing

inconsistencies and data loss.
 Concurrent Access: They allow multiple users to access and modify the database

concurrently without compromising data integrity.
 System Failures: They ensure that the database can recover from system failures and

return to a consistent state.
 Reliable Transactions: They provide reliable transaction processing, guaranteeing that

transactions are either fully completed or completely undone.
By adhering to the ACID properties, DBMSs can provide a robust and reliable environment
for data management, ensuring data consistency and integrity in the face of various
challenges.

www.blacksnwhite.com

Q.4) Discuss different Operations in Relational Algebra? Explain each
operation by giving suitable example.
 Answer : Relational Algebra Operations

Relational Algebra is a formal query language used to manipulate and query data in relational
databases. It provides a set of operations that can be combined to express complex queries.
Here are some of the fundamental operations:
1. Selection (σ)

 Selects tuples from a relation that satisfy a given predicate.
 Syntax: σ_predicate(relation)
 Example:
 Relation: Students(RollNo, Name, Age, Dept)
 Query: Find students older than 20.
 σ_Age>20(Students)

2. Projection (π)
 Projects a relation onto a subset of its attributes.
 Syntax: π_attribute_list(relation)
 Example:
 Query: List the names and ages of all students.
 π_Name, Age(Students)

3. Union (∪)
 Combines two relations with compatible schemas, eliminating duplicates.
 Syntax: relation1 ∪ relation2
 Example:
 Relation1: Students(RollNo, Name, Age, Dept)
 Relation2: Faculty(EmpID, Name, Age, Dept)
 Query: Combine the names and ages of students and faculty.
 π_Name, Age(Students) ∪ π_Name, Age(Faculty)

4. Intersection (∩)
 Finds the tuples common to two relations with compatible schemas.
 Syntax: relation1 ∩ relation2
 Example:
 Query: Find students who are also faculty members.
 π_Name(Students) ∩ π_Name(Faculty)

5. Set Difference (-)
 Removes tuples from one relation that are present in another relation with compatible

schemas.
 Syntax: relation1 - relation2
 Example:
 Query: Find students who are not faculty members.
 π_Name(Students) - π_Name(Faculty)

6. Cartesian Product (×)
 Combines each tuple of one relation with each tuple of another relation.
 Syntax: relation1 × relation2
 Example:
 Query: Combine every student with every department.
 Students × Departments

SET-II

www.blacksnwhite.com

7. Join
 Combines related tuples from two relations based on a join condition.
 Types of Joins:

o Natural Join (⋈): Joins relations on common attributes.
o Theta Join (⨝): Joins relations based on a specified condition.
o Equi-Join: Joins relations based on equality of specific attributes.

Example:
Relation1: Students(RollNo, Name, DeptID)
Relation2: Departments(DeptID, DeptName)
Query: Find students and their department names.
Students ⋈ Departments
These fundamental operations can be combined to create complex queries and extract
valuable information from relational databases.
 Q.5) What do you mean by Normalization? What are the different Normal

Forms. Explain by giving suitable example.

Answer : Normalization in Database Design

Normalization is a database design technique that organizes data to reduce redundancy and
improve data integrity. By breaking down complex data structures into simpler, more
organized ones, normalization helps to minimize data anomalies and inconsistencies.
Different Normal Forms
There are several normal forms, each addressing specific types of data redundancy and
anomalies. Here are some of the most common ones:

1. First Normal Form (1NF):
o Each attribute in a relation must be atomic (indivisible).
o No repeating groups should exist within a table.
o Example: Consider a table "Orders" with columns: OrderID, CustomerID,

Item, Quantity, Price. This table is not in 1NF because the "Item", "Quantity",
and "Price" attributes are repeating groups. To normalize it, we can create a
separate table "OrderDetails" with columns: OrderID, Item, Quantity, Price.

2. Second Normal Form (2NF):
o The relation must be in 1NF.
o Every non-prime attribute must be fully dependent on the primary key.
o Example: Consider a table "Products" with columns: ProductID,

ProductName, SupplierID, SupplierName, SupplierCity. Here,
"SupplierName" and "SupplierCity" are not fully dependent on the primary
key "ProductID". To normalize it, we can create a separate table "Suppliers"
with columns: SupplierID, SupplierName, SupplierCity.

3. Third Normal Form (3NF):
o The relation must be in 2NF.
o No transitive dependencies should exist.
o Example: Consider a table "Books" with columns: BookID, BookTitle,

AuthorID, AuthorName, AuthorCity. Here, "AuthorName" and "AuthorCity"
are transitively dependent on "BookID" through "AuthorID". To normalize it,
we can create a separate table "Authors" with columns: AuthorID,
AuthorName, AuthorCity.

www.blacksnwhite.com

1. Boyce-Codd Normal Form (BCNF):
o A stricter version of 3NF.
o Every determinant must be a candidate key.
o Example: Consider a table "Employees" with columns: EmployeeID,

DepartmentID, DepartmentName, ManagerID, ManagerName. Here,
"DepartmentID" and "ManagerID" are both determinants, but neither is a
candidate key. To normalize it, we can create separate tables for
"Departments" and "Managers".

By following these normal forms, database designers can create well-structured, efficient, and
maintainable databases. Normalization helps to ensure data integrity, reduce redundancy, and
improve query performance.

Q.6) What do you mean by Fragmentation? What are the different types
of fragmentation. Explain by giving suitable example.

Answer: Fragmentation in Database Design

Fragmentation is a database design technique that involves dividing a large database table
into smaller, more manageable fragments. This technique is employed to improve database
performance, scalability, and data availability. By breaking down large tables, fragmentation
can optimize query processing, reduce data transfer, and facilitate parallel processing.
Types of Fragmentation
There are primarily two main types of fragmentation:

1. Horizontal Fragmentation: This technique divides a table based on rows. Essentially,
it splits the table into multiple fragments, each containing a subset of the rows.

o Example: Consider a "Customers" table with millions of records. To improve
query performance, we can horizontally fragment it into two fragments:
"DomesticCustomers" and "InternationalCustomers". This way, queries that
only need to access domestic or international customers can be directed to the
appropriate fragment, reducing the amount of data scanned.

2. Vertical Fragmentation: This technique divides a table based on columns. It splits the
table into multiple fragments, each containing a subset of the columns.

o Example: A large "Products" table might be vertically fragmented into two
fragments: "ProductDetails" (containing columns like ProductID,
ProductName, Description) and "ProductPrices" (containing columns like
ProductID, Price, Discount). This can improve query performance for queries
that only require specific columns.

Hybrid Fragmentation This technique combines both horizontal and vertical fragmentation.
It allows for more granular control over data distribution and can be particularly useful in
complex database environments.
Key Considerations for Fragmentation
When designing a fragmented database, several factors must be considered:

 Fragmentation Key: This is the attribute or combination of attributes used to determine
how rows or columns are assigned to fragments.

 Fragmentation Algorithm: This algorithm defines the rules for assigning tuples to
fragments.

 Data Distribution: The distribution of data across fragments should be balanced to
optimize query performance.

 Query Processing: The database system must efficiently locate and access the relevant
fragments for a given query.

www.blacksnwhite.com

 Data Integrity and Consistency: Fragmentation should not compromise data integrity.
The database system must ensure that data is consistent across all fragments.

By carefully designing and implementing fragmentation, database administrators can
significantly improve the performance, scalability, and availability of large databases.

