
www.blacksnwhite.com

black N White black N White

NAME

ROLL
NUMBER

SEMESTER 1st

COURSE CODE DCA6110_AUG_2024 MCA_Sem1

COURSE NAME C PROGRAM LANGUAGE

www.blacksnwhite.com

Q1) Describe the basic structure of a C program. Explain scanf() function
with an example.

Answer . :- Basic Structure of a C Program
A C program typically consists of the following sections:

1. Preprocessor Directives:
o These directives instruct the preprocessor to modify the source code before

compilation.
o The most common directive is #include, which includes header files that

provide definitions for functions and variables.
o Example:

#include <stdio.h>
2. Global Declarations:

o Variables declared here are accessible throughout the entire program.
o However, it's generally recommended to declare variables within functions to

improve code organization and avoid potential conflicts.
3. Main Function:

o Every C program must have a main() function, which is the entry point of
execution.

o The main() function returns an integer value to the operating system.
o Example:

int main() {
 // Code goes here
 return 0;
}

4. Function Definitions:
o Functions are blocks of code that perform specific tasks.
o They can be defined before or after the main() function.
o Example:

int add(int a, int b) {
 return a + b;
}
The scanf() Function
The scanf() function is a standard input function in C used to read formatted input from the
console. It takes a format string and a list of pointers to variables as arguments.
Format String:

 The format string specifies the expected input format, using conversion specifiers to
indicate the data type of each input value.

 Common conversion specifiers:
o %d: Integer
o %f: Floating-point number
o %c: Character
o %s: String

Example:
#include <stdio.h>

int main() {
 int age;
 float height;
 char initial;

 SET - I

www.blacksnwhite.com

 printf("Enter your age, height, and initial: ");
 scanf("%d %f %c", &age, &height, &initial);

 printf("Age: %d\nHeight: %.2f\nInitial: %c\n", age, height, initial);

 return 0;
}
Explanation:

1. scanf("%d %f %c", &age, &height, &initial);
o %d: Reads an integer and stores it in the variable age.
o %f: Reads a floating-point number and stores it in the variable height.
o %c: Reads a single character and stores it in the variable initial.
o The & operator is used to pass the addresses of the variables to scanf(), allowing

it to modify the values at those memory locations.
2. printf("Age: %d\nHeight: %.2f\nInitial: %c\n", age, height, initial);

o This line prints the values of age, height, and initial in a formatted manner.
o %.2f specifies that the floating-point number height should be printed with two

decimal places.

Q.2) What are decision control statements in C? Explain the various types
of decision control statements in C programming.

Answer . :- Decision Control Statements in C
Decision control statements in C allow you to alter the flow of execution based on certain
conditions. These statements are crucial for creating dynamic and responsive programs. C
provides several types of decision control statements:
1. if Statement
The if statement is the most basic decision-making statement. It executes a block of code only
if a specified condition is true.
if (condition) {
 // Code to be executed if the condition is true
}
2. if-else Statement
The if-else statement provides an alternative path of execution if the condition is false.
if (condition) {
 // Code to be executed if the condition is true
} else {
 // Code to be executed if the condition is false
}
3. Nested if-else Statements
You can nest if-else statements to create more complex decision-making structures.
if (condition1) {
 // Code to be executed if condition1 is true
} else if (condition2) {
 // Code to be executed if condition1 is false and condition2 is true
} else {
 // Code to be executed if both conditions are false
}

www.blacksnwhite.com

4. Switch Statement
The switch statement provides a more efficient way to select one of several code blocks to be
executed based on the value of an expression.
switch (expression) {
 case value1:
 // Code to be executed if expression == value1
 break;
 case value2:
 // Code to be executed if expression == value2
 break;
 // ...
 default:
 // Code to be executed if no case matches
}
How Decision Control Statements Work

1. Condition Evaluation: The program evaluates the condition specified in the decision
control statement.

2. Execution Path:
o If the condition is true, the code within the corresponding block is executed.
o If the condition is false, the program either moves to the next statement or

executes the code in the else block, if present.
3. Flow Control: The decision control statement determines the flow of execution, either

continuing with the next statement or jumping to a different part of the code.
Example: Determining Grade Based on Marks

#include <stdio.h>

int main() {
 int marks;

 printf("Enter your marks: ");
 scanf("%d", &marks);

 if (marks >= 90) {
 printf("Grade A\n");
 } else if (marks >= 80) {
 printf("Grade B\n");
 } else if (marks >= 70) {
 printf("Grade C\n");
 } else if (marks >= 60) {
 printf("Grade D\n");
 } else {
 printf("Grade F\n");
 }

 return 0;
}
In this example, the if-else statements are used to determine the grade based on the input marks.
The program evaluates each condition sequentially until a match is found, and then the
corresponding grade is printed.

www.blacksnwhite.com

Q.3) What is the purpose of storage classes in C? Discuss the different types
of storage classes available in C.

Answer .:- Storage Classes in C
Storage classes in C determine the scope, lifetime, and linkage of variables. They
influence how memory is allocated and deallocated for variables, as well as how
they can be accessed within a program.
Types of Storage Classes in C

1. Automatic Storage Class
o Scope: Local to the block where it's declared.
o Lifetime: Exists only while the block is active.
o Linkage: No linkage.
o Default: Variables declared inside a function without a storage class

specifier are automatically of this type.
o Example:
int main() {
 int x = 10; // x is an automatic variable
 // ...
}

2. External Storage Class
o Scope: Global to the entire program.
o Lifetime: Exists throughout the program's execution.
o Linkage: External linkage, meaning it can be accessed from other

files.
o Keyword: extern
o Example:

extern int y; // Declare y as an external variable

int main() {
 // ...
}

3. Static Storage Class
o Scope: Local to the block where it's declared.
o Lifetime: Exists throughout the program's execution.
o Linkage: Internal linkage, meaning it can be accessed within the

same file.
o Keyword: static
o Example:
int main() {
 static int z = 20; // z is a static variable
 // ...

www.blacksnwhite.com

}
4. Register Storage Class

o Scope: Local to the block where it's declared.
o Lifetime: Exists only while the block is active.
o Linkage: No linkage.
o Keyword: register
o Purpose: To suggest to the compiler that the variable should be

stored in a register for faster access. However, the compiler may or
may not honor this request.

o Example:
int main() {
 register int i; // Suggest i to be stored in a register
 // ...
}

www.blacksnwhite.com

Q.4) What is the difference between call by value and call by reference in C?
Provide an explanation of recursion with a suitable example.

Answer . :- Call by Value vs. Call by Reference
In C, function arguments can be passed in two primary ways: call by value and call by
reference.
 Call by Value
 Mechanism: A copy of the actual argument's value is passed to the function.
 Changes within the Function: Any modifications made to the parameter within the

function do not affect the original argument.
 Example:

#include <stdio.h>
void swap(int a, int b) {
 int temp = a;
 a = b;
 b = temp;
}
int main() {
 int x = 10, y = 20;
 swap(x, y);
 printf("x = %d, y = %d\n", x, y); // Output: x = 10, y = 20
 return 0;
}
In this example, the values of x and y are copied to a and b within the swap function.
Swapping a and b does not affect the original values of x and y.

 Call by Reference
 Mechanism: The address of the actual argument is passed to the function.
 Changes within the Function: Any modifications made to the parameter within the

function directly affect the original argument.
 Implementation in C: C doesn't have direct support for call by reference. However, it

can be simulated using pointers.
 Example:

#include <stdio.h>

void swap(int *a, int *b) {
 int temp = *a;
 *a = *b;
 *b = temp;
}

int main() {
 int x = 10, y = 20;
 swap(&x, &y);
 printf("x = %d, y = %d\n", x, y); // Output: x = 20, y = 10
 return 0;
}
In this example, the addresses of x and y are passed to the swap function. The function
modifies the values at these addresses, effectively swapping the original values of x and
y.

 SET - II

www.blacksnwhite.com

Recursion
Recursion is a programming technique where a function calls itself directly or
indirectly. It's often used to solve problems that can be broken down into smaller, self-
similar subproblems.

 Key Components of Recursion:
1. Base Case: The simplest possible input for which the solution can be directly

calculated.
2. Recursive Case: The function calls itself with a smaller input, moving towards

the base case.
Example: Factorial Calculation
#include <stdio.h>

int factorial(int n) {
 if (n == 0) {
 return 1; // Base case
 } else {
 return n * factorial(n - 1); // Recursive case
 }
}

int main() {
 int num = 5;
 int result = factorial(num);
 printf("Factorial of %d = %d\n", num, result);
 return 0;
}
In this example:

1. If n is 0, the function returns 1 (base case).
2. Otherwise, the function recursively calls itself with n-1 and multiplies the result

by n.
Recursion is a powerful technique, but it's essential to ensure that the recursive calls
eventually reach the base case to avoid infinite recursion.

Q.5) Define pointers in C. Explain pointer arithmetic with an appropriate
example.

Answer .:- Pointers in C

A pointer in C is a variable that stores the memory address of another variable.
It provides a way to indirectly access and manipulate data. Pointers are powerful
tools, but they must be used with caution to avoid potential memory-related
issues.

Declaration of a Pointer

To declare a pointer, we use the * operator. For example, to declare a pointer to
an integer, we would write:

www.blacksnwhite.com

int *ptr;

This declares a variable ptr that can store the address of an integer.

 Assigning a Value to a Pointer

To assign the address of a variable to a pointer, we use the & operator, which gives
the address of the variable.

int x = 10;

int *ptr = &x;

Now, ptr stores the memory address of x.

 Dereferencing a Pointer

To access the value stored at the memory address pointed to by a pointer, we use
the * operator again, but in a different context. This is called dereferencing the
pointer.

int y = *ptr;

Here, y will be assigned the value of x, which is 10.

Pointer Arithmetic

Pointer arithmetic allows you to perform arithmetic operations on pointers, but it's
important to understand that these operations are based on the size of the data type
the pointer points to.

For example, if ptr is a pointer to an integer, ptr + 1 will point to the memory
location of the next integer, which is 4 bytes away (assuming a 4-byte integer).

int arr[5] = {10, 20, 30, 40, 50};

int *ptr = arr;

// Accessing elements using pointer arithmetic

printf("%d %d %d\n", *ptr, *(ptr+1), *(ptr+2)); // Output: 10 20 30

www.blacksnwhite.com

Q.6.a) What is the difference between structure and union in C?

Answer . : - Structures and Unions in C

Structures and unions are user-defined data types in C that allow you to group variables of
different data types under a single name. However, they have distinct characteristics:

 Structures

 Memory Allocation: Each member of a structure occupies its own memory space,
regardless of whether it's used or not.

 Access: Members can be accessed individually using the dot (.) operator.

 Use Cases:

o Representing real-world entities with multiple attributes (e.g., a person with
name, age, and address).

o Organizing related data together for better code readability and maintainability.

Example:

struct Person {

 char name[50];

 int age;

 float salary;

};

 Unions

 Memory Allocation: All members of a union share the same memory space. The size of
the union is equal to the size of its largest member.

 Access: Only one member can be active at a time. Accessing a different member
overwrites the previous one.

 Use Cases:

o Saving memory when you need to store different types of data in the same
memory location, but only one type is active at a time.

o Implementing data structures that can represent different states.

 Example:

union Data {

 int i;

 float f;

 char str[20];

};

 Key Differences:

www.blacksnwhite.com

Feature Structure Union

Memory
Allocation

Individual for each member Shared by all members

Member Access Multiple members can be active
simultaneously

Only one member can be active
at a time

Use Cases Representing real-world entities,
organizing related data

Saving memory, representing
different states

In Structures are used to group related data, while unions are used to save memory or represent
different data types in the same memory location. The choice between a structure and a union
depends on the specific requirements of your application.

Q.6.b) Explain various functions used in dynamic memory allocation.

Answer .:- Dynamic Memory Allocation in C

Dynamic memory allocation in C allows you to allocate memory at runtime, as opposed to
static memory allocation, which occurs at compile time. This flexibility is crucial for programs
that need to adapt to varying data sizes or complex data structures. C provides several functions
for dynamic memory allocation, each with its specific purpose:

1. malloc()

 Purpose: Allocates a block of memory of a specified size in bytes.

 Syntax: void* malloc(size_t size)

 Return Value: A pointer to the allocated memory block, or NULL if allocation fails.

Example:

int *ptr = (int*)malloc(sizeof(int));

2. calloc()

 Purpose: Allocates a block of memory for an array of elements, initializing each
element to zero.

 Syntax: void* calloc(size_t num, size_t size)

 Return Value: A pointer to the allocated memory block, or NULL if allocation fails.

Example:

int *arr = (int*)calloc(10, sizeof(int));

3. realloc()

 Purpose: Reallocates a previously allocated memory block to a new size.

 Syntax: void* realloc(void* ptr, size_t new_size)

 Return Value: A pointer to the reallocated memory block, or NULL if allocation fails.

www.blacksnwhite.com

Example:

int *ptr = (int*)malloc(10 * sizeof(int));

// ...

ptr = (int*)realloc(ptr, 20 * sizeof(int));

4. free()

 Purpose: Deallocates a block of memory previously allocated by malloc, calloc, or
realloc.

 Syntax: void free(void* ptr)

 Return Value: None

Example:

free(ptr);

Important Considerations:

 Memory Leaks: Always remember to free the memory allocated using these functions
to avoid memory leaks.

 Error Handling: Check the return value of these functions to ensure successful
allocation. If the return value is NULL, allocation failed.

 Pointer Arithmetic: Be careful when using pointer arithmetic to access elements within
the allocated memory block.

 Best Practices: Use these functions judiciously and consider alternative memory
management techniques like smart pointers in more complex scenarios.

